cuba.kr [원서][수치해석학입문] numerical mathematics and computing(6 e) - E. Ward Cheney, David R. Kincaid > cuba1 | cuba.kr report

[원서][수치해석학입문] numerical mathematics and computing(6 e) - E. Ward Cheney, David R. Kincaid > cuba1

본문 바로가기

cuba1


[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다. ]


[원서][수치해석학입문] numerical mathematics and computing(6 e) - E. Ward Chene…

페이지 정보

작성일 21-03-17 07:08

본문




Download : [원서][수치해석학입문] numeri.pdf





Suppose that α and β are two numbers, of which one is regarded as an approximation to the other. The error of β as an approximation to α is α −β; that is, the error equals the exact value minus the approximate value. The absolute error of β as an approximation to α is|α−β|.Therelativeerrorof β asanapproximationto α is|α−β|/|α|.Noticethatin computing the absolute error, the roles of α and β are the same, whereas in computing the relative error, it is essential to distinguish one of the two numbers as correct. (Observe that the relative error is undefined in the case α =0.) For practical reasons, the relative error is usually more meaningful than the absolute error. For example, if α1 =1.333, β1 =1.334, and α2 = 0.001, β2 = 0.002, then the absolute error of βi as an approximation to αi is the same in both cases—namely, 10−3. However, the relative errors are 3 4 ×10−3 and 1,respectively. The relative error clearly indicates that β1 is a good approximation to α1 but that β2 is a poor approximation to α2. In summary, we have absolute error =|exact value−approximate value| relative error = |exact value−approximate value| |exact value| Heretheexactvalueisthetruevalue.Ausefulwaytoexpresstheabsoluteerrorandrelative error is to drop the absolute values and write (relative error)(exact value) = exact value−approximate value approximate value = (exact value)[1+(relative error)] Sotherelativeerrorisrelatedtotheapproximatevalueratherthantotheexactvaluebecause

- E. Ward Cheney, David R. Kincaid




Thomson

Download : [원서][수치해석학입문] numeri.pdf( 54 )


레포트 > 기타
[원서][수치해석학입문]

[원서][수치해석학입문] numerical mathematics and computing(6 ed)
Sixth Edition
[원서][수치해석학입문] numerical mathematics and computing(6 e) - E. Ward Cheney, David R. Kincaid
Numerical mathematics and computing







순서

설명


[원서][수치해석학입문] numeri-2187_01_.jpg [원서][수치해석학입문] numeri-2187_02_.jpg [원서][수치해석학입문] numeri-2187_03_.jpg [원서][수치해석학입문] numeri-2187_04_.jpg [원서][수치해석학입문] numeri-2187_05_.jpg

[원서][수치해석학입문] Numerical mathematics and computing Sixth Edition - E. Ward Cheney, David R. Kincaid Thomson
수치해석학 원서 교재


다.
Total 17,949건 1 페이지

검색

REPORT 74(sv75)



해당자료의 저작권은 각 업로더에게 있습니다.

cuba.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다 ]]

[저작권이나 명예훼손 또는 권리를 침해했다면 이메일 admin@hong.kr 로 연락주시면 확인후 바로 처리해 드리겠습니다.]
If you have violated copyright, defamation, of rights, please contact us by email at [ admin@hong.kr ] and we will take care of it immediately after confirmation.
Copyright © cuba.kr All rights reserved.